Atombau

Quantenmechanik

Elementarteilchen, insbesondere Elektronen, verhalten sich im atomaren Bereich nicht nach den klassischen Newtonschen Gesetzen, sondern nach den Gesetzen der Quantenmechanik (Teilchen-Welle-Dualismus).

- Elektron kann nur bestimmte, diskrete Energien haben
- Ort und Impuls des Elektrons können exakt nicht gleichzeitig angegeben werden (Heisenbergsche Unschärferelation: $\Delta x \cdot \Delta p \ge h/4\pi$)

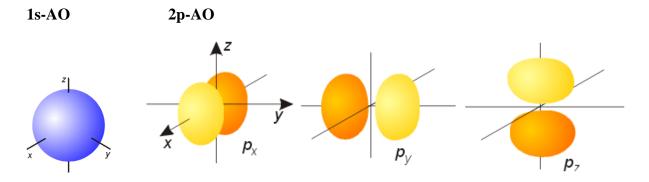
¹H Atom: 1 Proton / 1 Elektron

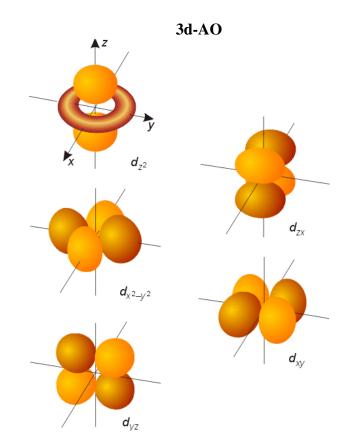
- Das Elektron verhält sich im Coulomb-Feld des Kernes wie eine Welle, die mit der Wellenfunktion Ψ (x,y,z,t) beschrieben werden kann.
- Die Wellenfunktion kann nur bestimmte Energiewerte ε besetzen (Grundschwingung und Oberschwingungen)
- Wegen der Heisenbergschen Unschärfe können nur Aufenthaltswahrscheinlichkeiten für das Elektron angegeben werden: Ψ²
- Der Bereich, in dem sich das Elektron am wahrscheinlichsten aufhält wird ORBITAL genannt
- Die diskreten Energiewerte und die dazugehörigen Wellenfunktionen können für das Wasserstoffatom über die Schrödingergleichung berechnet werden: $\mathcal{H}\Psi = \varepsilon \Psi$

Quantenzahlen

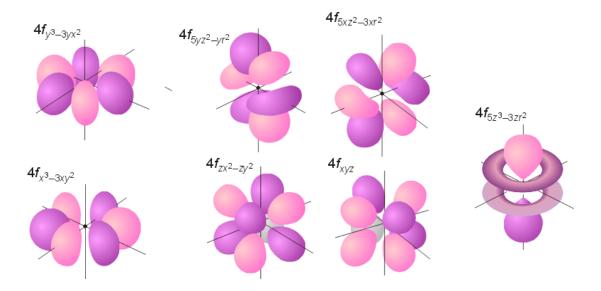
Vier Quantenzahlen charakterisieren die Energieniveaus des Elektrons:

- beschreibt die "Schale" 1. Hauptquantenzahl $n = \{1, 2, 3...\}$ K,L,M ... auch: 2. Nebenguantenzahl $1 = \{0,1,2,3 \dots n-1\}$ beschreibt den Drehimpuls des Elektrons s.p.d.f auch: 3. magnet. Quantenzahl $m = \{-1 \dots 0 \dots +1\}$ beschreibt den magnet. Drehimpuls 4.Spinquantenzahl s = +1/2, -1/2beschreibt den Eigendrehimpuls (Spin) \uparrow \downarrow auch:
 - Pauli-Prinzip: alle Elektronen im Feld eines Atomkerns müssen sich in mindestens einer Quantenzahl unterscheiden.
 - Quantenzahlen n und l charakterisieren die Lage der Energienieniveaus ε und die Gestalt des Raums in dem sich das Elektron am wahrscheinlichsten aufhält (Orbital)
 - Magnetische Quantenzahl m charakterisiert die räumliche Orientierung der Orbitale
 - Quantenzahlen n, l, m charakterisieren je ein Niveau ε, das maximal mit 2 Elektronen unterschiedlicher Spinquantenzahl s (+1/2 und -1/2) besetzt werden kann


Beispiel

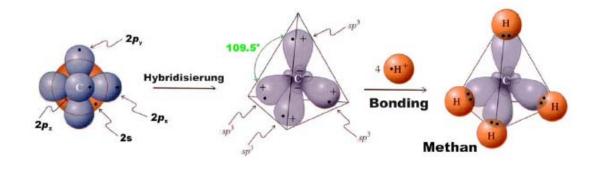

Periodensystem

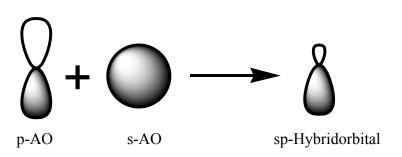
Den Quantenzahlen folgend, werden die Elemente nach ihrer Ordnungszahl (Anzahl der Elektronen) sortiert (beachte: Orbitale mit n=5, l=4 und n=6, l=3,4,5 liegen energetisch über den 7p Orbitalen und werden deshalb von den bekannten Elementen nicht besetzt). X=noch unbekannt.


n	l	m	Konfiguration		Elemente
7	1	-1 0 +1	$7p_x 7p_y 7p_z$		X, X, X, X, X, X
7	0	0	7s	$\uparrow\downarrow\uparrow\downarrow$	Fr, Ra
6	2	-2 -1 0 +1 +2	$6d_{xy} 6d_{xz} 6dyz 6d_{x2y2} 6d_{z2}$		Ac, Rf, Db, Sg, Bh Hs, Mt, Ds, Rg, X
6	1	-1 0 +1	$6p_x 6p_y 6p_z$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$	Tl, Pb, Bi, Po, At, Rn
6	0	0	6s	\uparrow	Cs, Ba
5	3	-3 -2 -1 0 +1 +2	+3 7 5f Orbitale	$\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow}$	14 Actinoide
5	2	-2 -1 0 +1 +2	$5d_{xy} 5d_{xz} 5dyz 5d_{x2y2} 5d_{z2}$		La, Hf, Tl, W, Re Os, Ir, Pt, Au, Hg
5	1	-1 0 +1	$5p_x 5p_y 5p_z$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$	In, Sn, Sb, Te, I, Xe
5	0	0	5s	\uparrow	Rb, Sr
4	3	-3 -2 -1 0 +1 +2	+3 7 4f Orbitale	$\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow}$	14 Lanthanoide
4	2	-2 -1 0 +1 +2	$4d_{xy}4d_{xz}4dyz4d_{x2y2}4d_{z2}$	$\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}$	Y, Zr, Nb, Mo, Tc Ru, Rh, Pd, Ag, Cd
4	1	-1 0 +1	$4p_x4p_y4p_z$	\uparrow	Ga, Ge, As, Se, Br, Kr
4	0	0	4s	\uparrow	K, Ca
3	2	-2 -1 0 +1 +2	$3d_{xy} 3d_{xz} 3dyz 3d_{x2y2} 3d_{z2}$	$\boxed{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}$	Sc, Ti, V, Cr, Mn Fe, Co, Cu, Ni, Zn
3	1	-1 0 +1	$3p_x 3p_y 3p_z$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$	Al, Si, P, S, Cl, Ar
3	0	0	3s	\uparrow	Na, Mg
2	1	-1 0 +1	$2p_x\ 2p_y\ 2p_z$	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$	B, C, N, O, F, He
2	0	0	2s	\uparrow	Li, Be
1	0	0	1s	\uparrow	H, He

Atomorbitale (siehe auch http://www.orbitals.com/orb/orbtable.htm)

4f-AO




Kohlenstoffatom

- Entartung: Orbitale mit gleicher Energie haißen "entartet" (z.B. 2p Orbitale des C)
- Hunsche Regel: Elektronen werden in entartete Orbitale zuerst "ungepaart" gefüllt
- Valenzelektronen: Elektronen der äußeren Schale (z.B. 2s und 2p Elektronen des C)

Hybridisierung am C Atom

Die Atomorbitale der Valenzelektronen werden zu neuen entarteten <u>Hybridorbitalen</u> gemischt. <u>Merke</u>: die Anzahl der gemischten AO und der Hybridorbitale ist gleich!

