Vielfältigkeit der Bindungen in Organischen Molekülen

FUNKTIONELLE GRUPPEN sind Atomgruppen in organischen Molekülen, die die chemischen Eigenschaften und das Reaktionsverhalten maßgeblich bestimmen. Stoffe mit gleichen Funktionellen Gruppen werden zu **STOFFKLASSEN** zusammengefasst.

<u>Beispiel</u>: Alle Stoffe mit der funktionellen Gruppe –COOH verhalten sich wie Säuren und werden in der Stoffklasse der Carbonsäuren zusammengefasst.

Tabelle: Funktionelle Gruppen

Stoffklasse	Konstitutionsformel	Charakteristisches S Der funktionellen Gru	
A. Kohlenwasserstoffe	e		
Alkane (Paraffine)	H H R-C-C-R H H		Einfachbindung
Alkene (Olefine)	HC=CR	\c=c\	Doppelbindung
Alkine (Acetylene)	R-C≡C-R	—C≡C—	Dreifachbindung
Cycloalkane	H_2C C C C C C C C C C		Ringstruktur
Aromaten			aromatischer Ring
B. Sauerstoffhaltige Ve	erbindungen		
Alkohole (Alkanole)	R-CH ₂ -O-H	—0-Н	Hydroxygruppe
Phenole	O,H	—о-н	Hydroxygruppe anaromatischem Ring
Ether	R-O-R		Ethergruppe RO- wird als Alkoxygruppe bezeichnet
Aldehyde (Alkanale)	R-C H	-c,H	Formylgruppe
Ketone (Alkanone)	R R	رقر _	Keto- oder Carbonyl- gruppe
Acetale, Ketale	R O-R R O-R H O-R R O-R Acetal Ketal		Acetalgruppe
Carbonsäuren (Alkansäuren)	R-c 0 0-н	-c_0-H	Carboxygruppe

Säureanhydride	R C R	المراكب	Carbonylaxycarbonyl- gruppe
Ester	R C O R	, E , R	Alkoxycarbonylgruppe
Lactone	R-C-(CH ₂) _n		Estergruppe im Ring
Hydroxycarbonsäuren	H-O H O H		Hydroxy- und Carboxy- gruppe im Molekül
Ketocarbonsäuren	R C (CH ₂) C O H		Carbonyl- und Carboxy- gruppe im Molekül
C. Halogenverbindung	en		
Halogenalkane (Alkylhalogenide)	R-X		X = -F, -CI, -Br, -I
Halogencarbonsäuren	$R = C + CH_2 + C = O$ $X = O - H$		Halogen und Carboxyl- gruppe im Molekül
Säurehalogenide (Alkanoylhalogenide, Acylhalogenide)	R.C.X	, E _x	Halogencarbonylgruppe
D. Stickstoffverbindun	gen		
primäre Amine	R — NH_2	$-NH_2$	Aminogruppe
sekundäre Amine	R—N—R H		
tertiäre Amine	R—N—R R		
quartäre Ammonium- salze	R—N—R X [©]		
Säureamide	R NH ₂	E.NH2	Aminocarbonylgruppe (Carbamoylgruppe)
Urethane	O R-O-C-NH-R		Alkoxycarbamoylgruppe

Aminosäuren	R-C-(CH ₂)COO-H		Amino- und Carboxy- gruppe im Molekül
Nitroalkane	$R-NO_2$	-NO ₂	Nitrogruppe
Nitrosoalkane	$R-CH_2-N=O$	—N=0	Nitrosogruppe
Aldimine	R-C,NH	$-c_{_{_{\hspace{-0.5em}H}}}^{^{\hspace{-0.5em}NH}}$	Iminogruppe
Diazoniumsalze	Ar—N≡N X⊖	—N≣N ⊕	Diazoniumgruppe Ar = Arylgruppe
Azoverbindungen	Ar-N=N-Ar	—N=N—	Azogruppe
Nitrile, Cyanide	R—C≡N	R—C≡N	Nitril-, Cyanogruppe
Isonitrile	⊕ ⊖ R—N≡C	⊕ ⊖ —N≡C	Isonitrilgruppe
E- Schwefelverbindung	en		
Mercaptane (Thiole)	R-S-H	—8-н	Mercaptogruppe
Disulfide	R-S-S-R	—s-s—	Disulfidgruppe
Thioether	R-S-R	SR	Alkylthiogruppe
Sulfone	R—S—R		Sulfonylgruppe
Sulfensäuren	R-S-OH	R-S-OH	Sulfengruppe
Sulfinsäuren	O R—S—OH	—S-ОН	Sulfingruppe
Sulfonsäuren	R—S—OH Ö	— В–он	Sulfogruppe

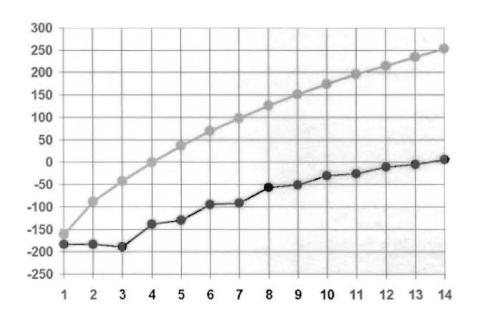
Alkane (Nomenklatur, Eigenschaften, Synthese, Reaktionen)

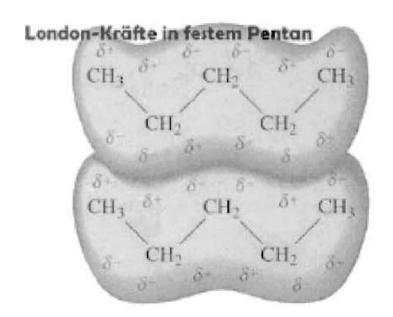
Homologe Reihe

Eine **HOMOLOGE REIHE** ist eine Reihe von Stoffen mit einer allgemeinen Summenformel, bei der sich ein Stoff der Reihe (höheres Homolog) durch "Hinzufügen" eines "Kettengliedes" zum vorherigen Stoff (niederes Homolog) der Reihe ergibt.

z.B. Alkane: C_nH_{2n+2} Kettenglied: CH_2 Phosphane: P_nH_{n+2} Kettenglied: PH

Kohlenwasserstoffe / Alkane

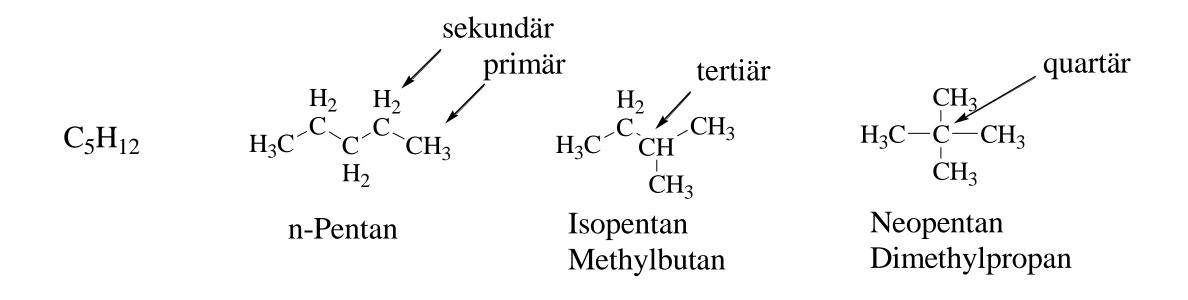

KOHLENWASSERSTOFFE sind Stoffe, die nur C und H enthalten. **ALKANE** sind gesättigte Kohlenwasserstoffe, die nur CC-Einfachbindungen enthalten.


Homologe Reihe der Alkane

Die **NOMENKLATUR** chemischer Stoffe wird durch die **IUPAC** (International Union of Pure and Applied Chemistry) festgelegt (<u>siehe auch</u>: Seminarstunde).

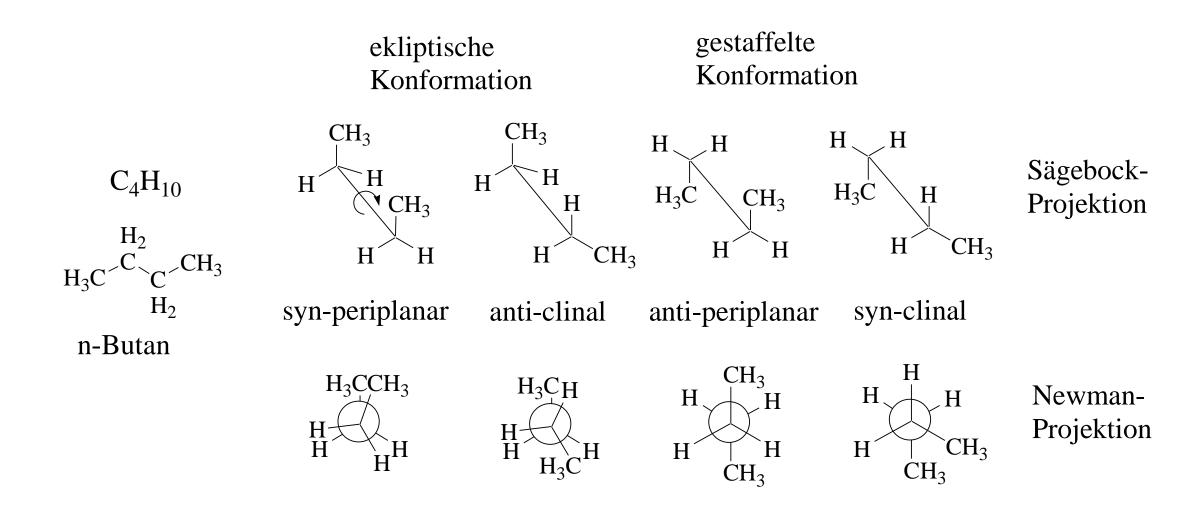
Merke: Alkan (D) Alkane (GB)
Methan (D) Methane (GB)

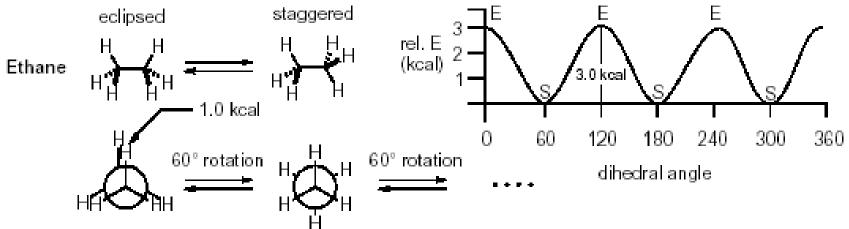
n Name	n Name	<u>Formelschreibweise</u>	
1 Methan	22 Docosan		
2 Ethan	23 Tricosan	Summenformel	
3 Propan	24 Tetracosan	5 5	2 11
4 Butan	25 Pentacosan	z.B. Propan	C_3H_8
5 Pentan	26 Hexacosan		
6 Hexan	27 Heptacosan	Komprimierte Schreibweise	H_2
7 Heptan	28 Octacosan		H_3C C C C H_3
8 Octan	29 Nonacosan		5
9 Nonan	30 Triacontan		
10 Decan	31 Hentriacontan		
11 Undecan	32 Dotriacontan	Valenzstrich Schreibweise	
12 Dodecan	33 Tritriacontan		Н Н Н
13 Tridecan	40 Tetracontan		Н-С-С-С-Н
14 Tetradecan	50 Pentacontan		$\overset{1}{\mathrm{H}}\overset{1}{\mathrm{H}}\overset{1}{\mathrm{H}}$
15 Pentadecan	60 Hexacontan		
16 Hexadecan	70 Heptacontan	Keilstrich Schreibweise	II m
17 Heptadecan	80 Octacontan		H H
18 Octadecan	90 Nonacontan		$H \subset C \subset H$
19 Nonadecan	100 Hectan		
20 Icosan	132 Dotriacontahectan		н нн н
21 Henicosan			

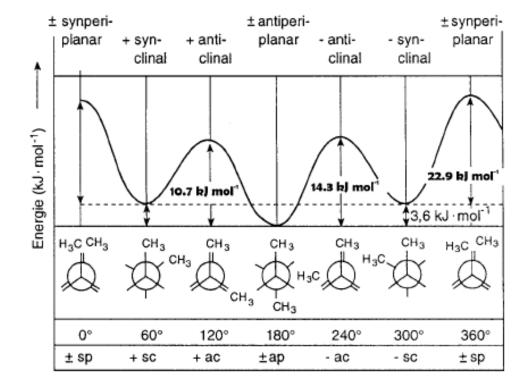

Number of possible	e alkane isomers
molecular formula	number of constitutional isomers
С ₃ Н ₈	1
C ₄ H ₁₀	2
С ₅ Н ₁₂	3
C ₆ H ₁₄	5
С ₇ Н ₁₆	9
C ₈ H ₁₈	18
С ₉ Н ₂₀	35
C ₁₀ H ₂₂	75
C ₁₅ H ₃₂	4,347
C ₂₀ H ₄₂	366,319
С ₃₀ Н ₆₂	4,111,846,763

<u>Isomere</u>

ISOMERE sind Stoffe mit gleicher Summenformel aber unterschiedlicher Struktur. Es gibt verschiedene Typen von Isomere.


Konstitutionsisomere (unterschiedliche Topologie)


KONSTITUTIONSISOMERE sind Isomere, die sich in der Art und Abfolge der Atome (Atomverknüfung) unterscheiden. Bei Alkanen sind dies *unverzweigte* und *verzeigte* Alkane.


Konformationsisomere (unterschiedliche Geometrie)

KONFORMATIONSISOMERE sind Isomere, die durch Rotation um eine σ -Bindung entstehen

- Two extreme conformations, barrier to rotation is 3.0 kcal/mol.

KONFIGURATIONSISOMERE sind Isomere, die sich in ihrer Geometrie oder Topographie unterscheiden

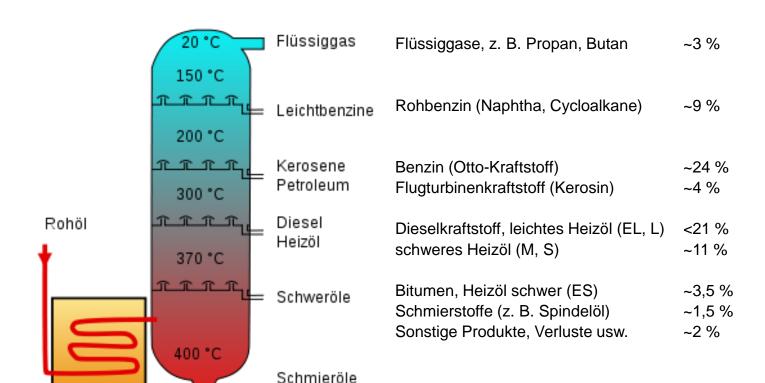
CHRIRALITÄT: Verbindungen deren Bild und Spiegelbild nicht deckungsgleich sind unterscheiden sich in ihrer Topograpohie und heißen **CHIRAL**

Ein Stoff mit einem sp³-hybridisierten Kohlenstoffatom, das 4 unterschiedliche Substituenten trägt ist chiral. Dieses C-Atom heißt **CHRIRALITÄTSZENTRUM**

ENANTIOMERE heißen die beiden Isomere, die sich wie Bild und Spiegelbild verhalten

Ein RACEMAT ist eine 1:1 Mischung der beiden Enantiomeren

OPTISCHE AKTIVITÄT: Enantiomere unterscheiden sich nur in ihrer Fähigkeit, die Polarisationsebene von polarisiertem Licht zu drehen (<u>Cotton Effekt</u>). Alle anderen physikalischen Eigenschaften sind identisch.

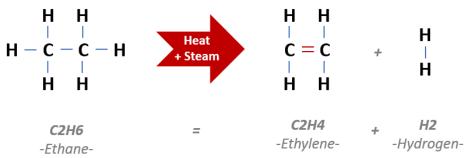

Beispiel: Glycerinaldehyd

HOH₂C OH HOH₂C
$$CH_2OH$$

Gewinnung / Darstellung

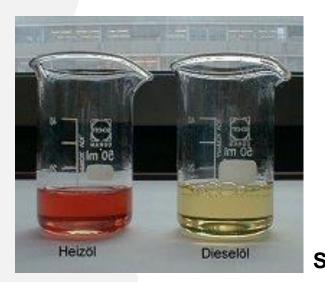
Röhrenofen

GEWINNUNG der Alkane durch Raffinierung von Erdöl und **CRACKEN** und katalytische Hydrierung oder durch **PLATFORMING** (catalytic reforming) und **KOHLEVERFLÜSSIGUNG** (Fischer-Tropsch-Verfahren)

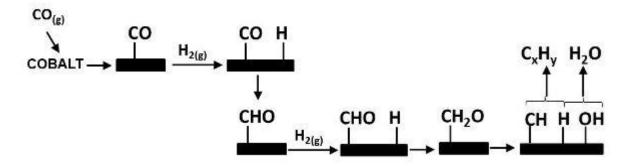


Paraffine

Wachse Bitumen/Teer


Koks

Benzin für Kfz (KW-Gemisch) Kp: $70 \dots 210^{\circ}$ C FP: $< -20^{\circ}$ C Diesel für Kfz (KW-Gemisch) KP: $150 \dots 390^{\circ}$ C FP:> 55° C


Platforming

Synthesegas und Fischer-Tropsch-Verfahren

$$egin{aligned} 2~\mathrm{C} + \mathrm{O}_2 &\longrightarrow 2~\mathrm{CO}, & \Delta H = -221~\mathrm{kJ/mol} \ \mathrm{C} + \mathrm{H}_2\mathrm{O} &\longrightarrow \mathrm{CO} + \mathrm{H}_2, & \Delta H = +131,3~\mathrm{kJ/mol} \ \mathrm{C} + \mathrm{CO}_2 &\rightleftharpoons 2~\mathrm{CO}, & \Delta H = +172,4~\mathrm{kJ/mol} \end{aligned}$$

Fischer Tropsch Synthesis on Cobalt and Cobalt-Rhenium Catalyst 210 deg C and 20 bar

DARSTELLUNG der Alkane durch verschiedene chemische Reaktionen.

Katalytische Hydrierung von Alkenen

$$R \longrightarrow R \longrightarrow R$$

$$R \longrightarrow R$$

Reduktion von Halogenalkanan

$$R-CH_2-Cl + Zn + HCl \longrightarrow R-CH_3 + ZnCl_2$$

4 R-CH₂-Cl + LiAlH4
$$\longrightarrow$$
 4 R-CH₃ + LiCl + AlCl₃

Hydrolyse von Grignardverbindungen

$$R-CH_2-Br + Mg \longrightarrow R-CH_2-MgBr \xrightarrow{H_2O} R-CH_3 + MgBrOH$$

Wurtz-Synthese

$$2 R-CH_2-Br + 2 Na \longrightarrow R-CH_2-CH_2-R + 2 NaBr$$

Alkylierung von Grignardverbindungen

$$R-CH_2-MgBr + R'-CH_2-Br \longrightarrow R-CH_2-CH_2-R' + MgBr_2$$

Kolbe-Elektrolyse

anodische
$$\begin{array}{ccc}
& \text{anodische} \\
2 & \text{R-CH}_2\text{-COO} & \xrightarrow{\text{Oxidation}} & \text{R-CH}_2\text{-CH}_2\text{-R} + 2 \text{ CO}_2
\end{array}$$

Reaktionen von Alkanen

Allgemein:

CHEMISCHE REAKTIONEN bedingen einen Bruch einer Bindung.

Es sind zwei Arten eines Bindungsbruchs einer kovalenten Bindung möglich.

Homolyse
$$C-X \rightarrow C^{\cdot} + X^{\cdot}$$

Heterolyse
$$C-X \rightarrow C^+ + X^- \text{ oder } C^- + X^+$$

Beispiele:

Dissoziation von Chlor mit Lichtenergie :
$$h\nu$$
 CI-CI \rightarrow 2 CI-

Dissoziation von Essigsäure:
$$H_3C-COOH \stackrel{\leftarrow}{\rightarrow} H_3C-COO^- + H^+$$
 pKa-Werte

Wichtige Reaktionen von Alkanen

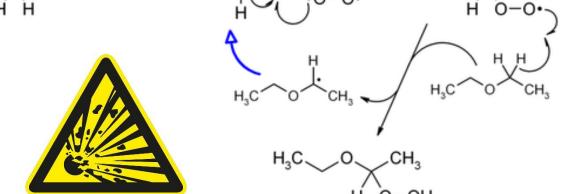
Vollständige Oxidation (Verbrennung)

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$
 $\Delta H = -883 \text{ kJ/mol}$ $C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ $\Delta H = -1542 \text{ kJ/mol}$

$$\Delta H = -883 \text{ KJ/MOI}$$

 $\Delta H = 15/2 \text{ kJ/mol}$

Partielle Oxidation


$$CH_4 + O_2 \rightarrow H-C \equiv C-H + 10 H_2 + 2 CO \text{ (bei } 1500^{\circ}\text{C)}$$

 $CH_4 + H_2O \rightarrow 3 H_2 + CO$ (bei 850°C an Ni-Katalysator)

Autoxidation

$$\begin{array}{ccc}
& CH_3 & O_2 140^{\circ}C \\
H_3C - C - H & \longrightarrow & I \\
& CH_3
\end{array}$$

$$CH_3$$
 $H_3C-C-O-OH$
 CH_3

Autoxidation von Diethylether

Photohalogenierung

Photosulfochlorierung

Nitrierung

Radikalische Substitution (Photohalogenierung)

Die RADIKALISCHE SUBSTITUTION S_R ist eine KETTENREAKTION

Startreaktion: $CI-CI \rightarrow 2 CI$

Propargierung 1: $CI \cdot + CH_4 \rightarrow H-CI + H_3C \cdot$

Propargierung 2: $H_3C \cdot + CI \cdot CI \rightarrow H_3C \cdot CI + CI \cdot$

Abbruchreaktionen: $H_3C \cdot + H_3C \cdot \rightarrow H_3C \cdot CH_3$

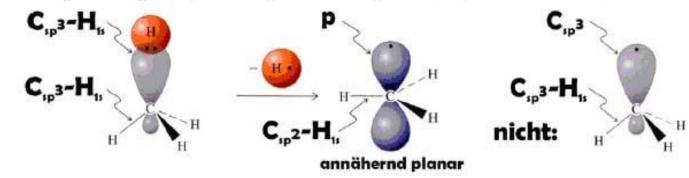
 $H_3C \cdot + CI \cdot \rightarrow H_3C - CI$

 $Cl \cdot + Cl \cdot \rightarrow Cl \cdot Cl$

 $H_3C \cdot + O_2 \rightarrow H_3C \cdot OO \cdot$

Dissotiationsenergien kJ/mol

Element	E-E-Bind	ung	E-H-Bind	lung	E-C-Bin	dung
н	н-н	435				
Hal	F-F	159	H-F	568	H₃C-F	468
	CI-CI	247	H-CI	426	H ₃ C-CI	326
	Br-Br	192	H-Br	364	H ₃ C-Br	271
	1-1	150	H-I	297	H ₃ C-I	213
0	но-он	213	н-он	497	H₃C-OH	359
	tBuO-OtBu	159				
S	H ₃ CS-SCH ₃	251	H-SH	343	H₃C-SH	255
С	H ₃ C-CH ₃	355	H-CH ₃	439		
	tBu-tBu	309	H-CH ₂ CH ₃	418		
			H-tBu	389		

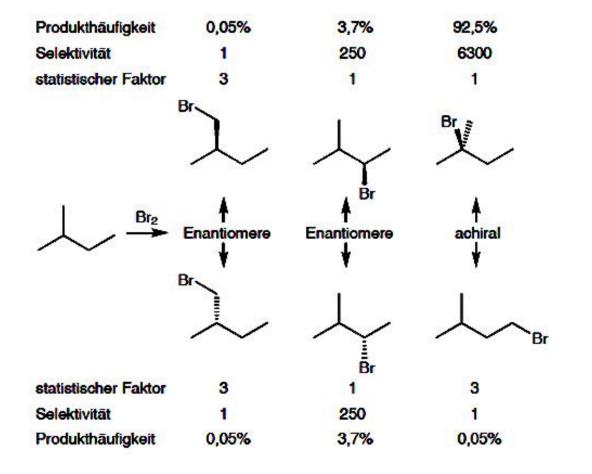

Radikalstarter

$$\begin{array}{c|c} & H_3C \\ \hline N \geqslant C \\ H_3C \\ CH_3 \\ \end{array}$$

Struktur von Radikalen

RADIKALE sind sp² hybridisiert

Abbildung: Änderung der Hybridisierung bei der Bildung eines Methylradikals aus Methan


Stabilität von Radikalen

Radikale werden durch HYPERKONJUGATION, HYBRIDISIERUNGSWECHSEL, INDUKTIVE und MESOMERE EFFEKTE stabilisiert.

Merke: je höher substituiert desto stabiler ist ein Radikal

Tabelle 3: Relative Reaktionsgeschwindigkeitskonstanten k_{rel} für radikalische Halogenierungen an primären, sekundären und tertiären C-Atomen

Halogen	primäres Zentrum	sekundäres Zentrum	tertiäres Zentrum
F ₂ (25°C)	1	1,2	1,4
Cl₂ (25°C)	1	4	5
Br ₂ (98°C)	1	250	6.300

