Diene

Konstitutionsisomere

KUMULIERTE DIENE

1,2-Diene

$$H_2C=C=CH-CH_2-CH_3$$

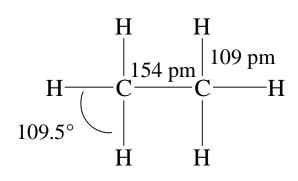
1,2-Pentadien

KONJUGIERTE DIENE

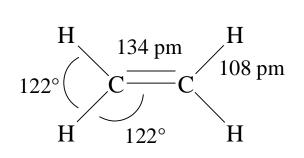
1,3-Diene

$$H_2C=CH-CH=CH-CH_3$$

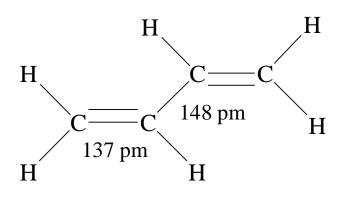
1,3-Pentadien


ISOLIERTE DIENE

1,4.Diene

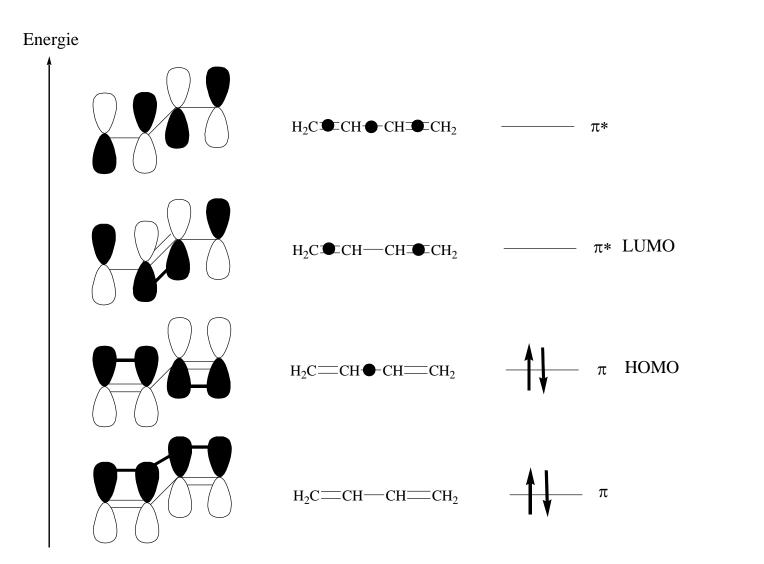

$$H_2C=CH-CH_2-CH=CH_2$$

1,4-Pentadien


<u>Struktur</u>

CC-Einfachbindung

CC-Doppelbindung



1,2-Dien

Molekülorbitale

HOMO = highest occupied molecular Orbital **RESONANZ-, MESOMERIE-STABILISIERUNG**

LUMO = lowest unoccupied molecular orbital

Mesomerie

Die π -Elektronen sind über das gesamte Molekül "verteilt". Es können mehrere **MESOMERE GRENZFORMELN** gezeichnet werden.

<u>Merke</u>: Bei mesomeren Grenzformeln werden nur Elektronen "verschoben"; die Atome bleiben auf ihrem Platz, und die Abfolge ihrer Bindung bleibt unverändert.

$$H_2C$$
 \longrightarrow CH \longrightarrow OH \longrightarrow

Die RESONANZSTABILISIERUNG des Butadiens beträgt ca. 15 kJ/mol

SCHMIDT-STAUDINGER REGEL:

 σ -Bindungen neben π -Bindungen sind durch σ - π -Kopplung stabilisiert.

Konformation

Synthese

Dehydrierung von Alkanen

Dehydratisierung von Diolen

$$OH$$
 Δ

Andere Methoden zur Olefinierung

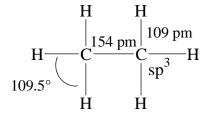
Reaktionen

Elektrophile 1,2 und 1,4-Addition

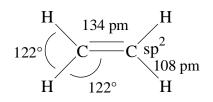
Radikalische Addition

Diels-Alder-Reaktion

Chelotrope Reaktion


Alkine (Nomenklatur, Eigenschaften, Synthese, Reaktionen)

Nomenklatur


Name = [Position Dreifachbindung]-KW-Stamm + "in"

HC
$$\equiv$$
CH —C \equiv CH HC \equiv C — C \equiv C — Ethin Propin 1-Butin 2-Butin Acetylen HC \equiv C — HC \equiv C —CH $_2$ — Ethinyl- Propargyl-

<u>Allgemeines</u>

CC-Einfachbindung $\Delta H = 335 \text{ kJ/mol}$

CC-Doppelbindung $\Delta H = 595 \text{ kJ/mol}$

$$H - C = C \frac{121 \text{ pm}}{C} \frac{\text{sp}}{106 \text{ pm}}$$

CC-Doppelbindung $\Delta H = 1257 \text{ kJ/mol}$

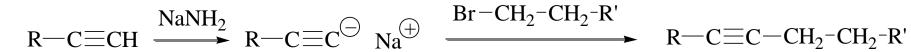
<u>Acidität</u>

$$sp^3$$
 sp^2 sp H_3C-CH_2-H $H_2C=CH-H$ $HC\equiv C-H$ $pK_a=51$ $pK_a=44$ $pK_a=25$ niederer s-Anteil

Darstellung

Technisch

$$6 \text{ CH}_4 + \text{O}_2 \xrightarrow{1500^{\circ}\text{C}} 2 \text{ HC} \equiv \text{CH} + 10 \text{ H}_2 + 2 \text{ CO}$$


$$2000-$$

$$\text{CaO} + 3 \text{ C} \xrightarrow{3000^{\circ}\text{C}} \text{CO} + \text{CaC}_2 \xrightarrow{\text{H}_2\text{O}} \text{HC} \equiv \text{CH} + \text{Ca(OH)}_2$$

Dehydrohalogenierung

$$\begin{array}{ccc}
\text{HC} = \text{CH} - \text{R} & \frac{\text{NaNH}_2}{\longrightarrow} & \text{HC} = \text{C} - \text{R} \\
\text{Br} & & & & & \\
\end{array}$$

Alkinylierung

Calciumcarbid

Chemiepark Knapsack (NRW)

Reaktionen

Salzbildung

$$R-C \equiv C-H \xrightarrow{[Ag(NH_3)_2]NO_3} R-C \equiv C-Ag \checkmark + NH_4NO_3 + NH_3$$
Acetylide
explosiv!

Reduktion

$$R-C\equiv C-R$$
 Lindlar-Kat., H_2 R $C=C$ cis-Alken H

$$R-C\equiv C-R$$

Na in NH₃ fl.

 $C\equiv C$

H trans-Alken

 R

Oxidation

$$R-C \equiv C-H$$
 $\xrightarrow{O_3}$ $R-COOH + H-COOH$
 $R-C \equiv C-H$ $\xrightarrow{KMnO_4}$ $R-COOH + CO_2$

Respekt in der Chemie vor Explosivstoffen:

Ein erbsenkleines Stück Silberacetylid explodiert.

Elektrophile Addition

$$R-C \equiv C-H$$
 $\xrightarrow{Cl_2, FeCl_3}$ \xrightarrow{R} \xrightarrow{Cl} keine Reaktion ohne Lewissäure!

$$R-C \equiv C-R \xrightarrow{HCl, \Delta} R \xrightarrow{R} Cl \xrightarrow{HCl, \Delta} R \xrightarrow{Cl Cl} R$$

Reppe-Synthesen

Hydratisierung
$$H-C\equiv C-H$$
 $\xrightarrow{H_2O}$ H_3C $\xrightarrow{H_3C}$ H_2SO_4

Vinylether
$$H-C \equiv C-H$$
 \xrightarrow{ROH} \xrightarrow{RO} \xrightarrow{RO}

Vinylester
$$H-C \equiv C-H$$
 $RCOOH$ R R O

Acrylester
$$H-C\equiv C-H$$
 EtOH O OEt

Acrylnitril
$$H-C\equiv C-H$$
 HCN CN

Propargylalcohole
$$H-C\equiv C-H$$

R-CHO

Base

R

OH

R

Cyclooligomerisierung

$$\begin{array}{c|c} & & \text{Ni(CN)}_2 \\ & & & \end{array}$$

Pauson-Khand-Reaktion

Kupplungen

Heck
$$R-C\equiv C-H+Br$$
 Pd, CuI $R-C\equiv C$

Sonogashira
$$R-C\equiv C-H+Br$$
 \longrightarrow $R-C\equiv C$

Glaser 2 R-C
$$\equiv$$
C-H $\xrightarrow{\text{CuI, O}_2}$ R-C \equiv C-C \equiv C-R

Benzol und andere aromatische Kohlenwasserstofe (Eigenschaften, Reaktionen)

Aromatische Kohlenwasserstoffe wie das Benzol, sind Stoffe mit außergewöhnlichen Eigenschaften, die sich von denen der Alkene unterscheiden. Die Summe diese Eigenschaften wird AROMATIZITÄT genannt.

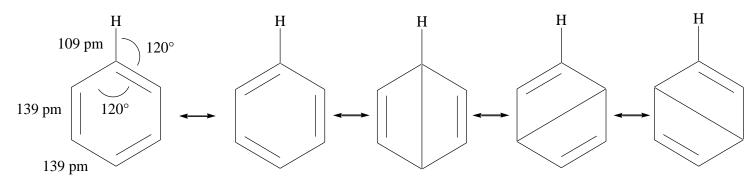
Besondere Eigenschaften Ebene Molekülstruktur

Cyclisch konjugierte Doppelbindungen

Alle C sind sp² hybridisiert

Alle CC-Abstände sind im Benzol identisch

Wenig reaktiv (keine spontane Addition von Halogenen)

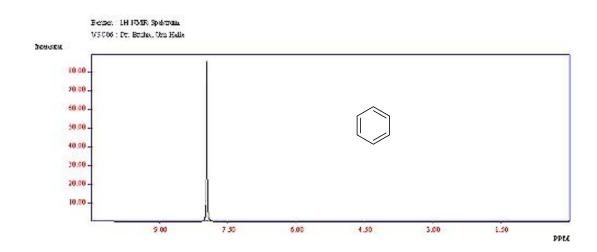

Kleinere Hydrierwärme als erwartet (**RESONANZSTABILISIERUNG** 151 kJ/mol)

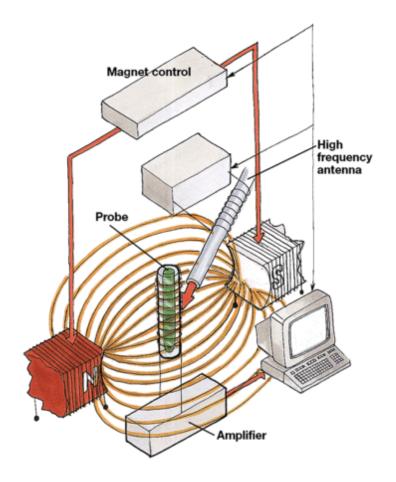
Substitutionsreaktionen nach einem Additions-Eliminierungsmechanismus

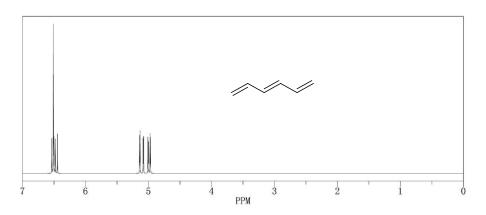
Charakteristische Tieffeldverschiebung im Protonen-NMR

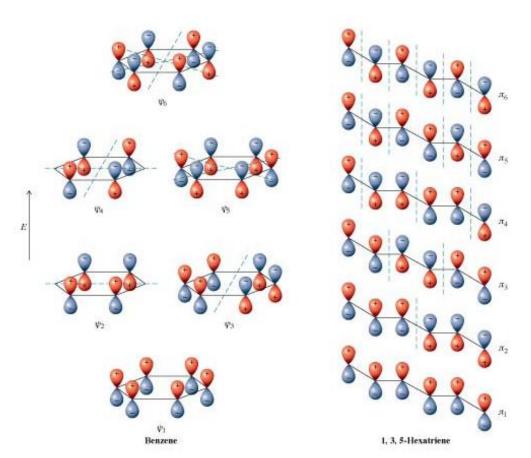
Struktur / Molekülorbitale

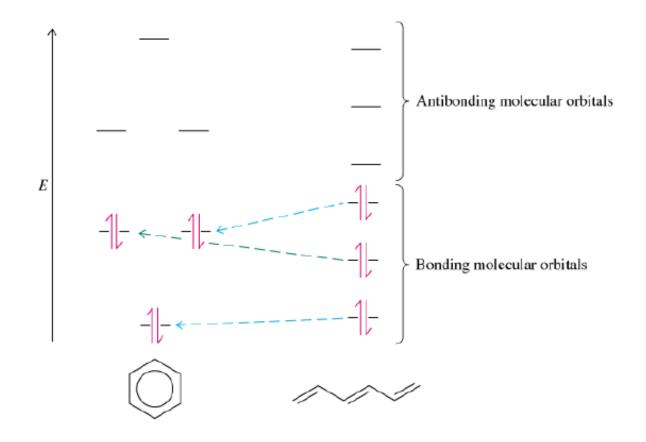
HÜCKEL-REGEL (4n+2) π-Elektronen in ebenem, cyclisch konjugierten System

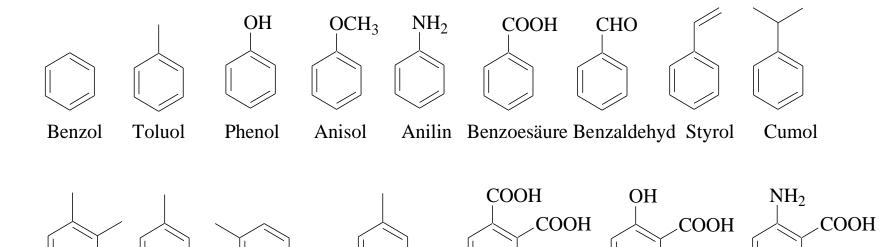

Kekule-Mesomerie-Strukturen


Dewar-Mesomerie-Strukturen


NMR-Spektrometer




Bruker 600 MHz Spektrometer



p-Xylol

Stammname ist meist Trivialname

Phthalsäure

Mesitylen

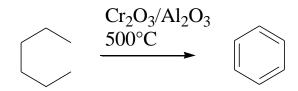
Benzonitril Benzylalkohol Acetophenon

m-Xylol

o-Xylol

Benzophenon

Naphthalin


Salicylsäure

Anthracen

Anthranilsäure

Gewinnung

Aus Steinkohleteer und Erdöl oder aus n-Hexan durch PLATFORMING

Reaktionen

Elektrophile Substitution

Nucleophile Substitution

$$\begin{array}{c|c}
H & & H \\
X & & & \\
+ Nu & & \\
\end{array}$$

$$\begin{array}{c}
H & & \\
Nu & \\
+ X & \\
\end{array}$$

$$\begin{array}{c}
Nu \\
+ X & \\
\end{array}$$

$$\begin{array}{c}
Nu \\
\end{array}$$

$$\begin{array}{c}
Nu \\
\end{array}$$

$$\begin{array}{c}
Nu \\
\end{array}$$

Radikalische Substitution (Seitenkette)

Merke: SSS = Sonne, Siedehitze, Seitenkette (radikalisch)

KKK= Kälte, Katalysator, Kern (electrophil)

Elektrophile Substitution

Friedel-Crafts-Alkylierung

$$+$$
 R-Cl $\xrightarrow{\text{AlCl}_3}$ $+$ HCl

Friedel-Crafts-Acylierung

$$+$$
 R-C $\stackrel{O}{\longrightarrow}$ $\stackrel{AlCl_3}{\longrightarrow}$ $\stackrel{R}{\longrightarrow}$ + HCl

Nitrierung

Halogenierung

$$+ Cl_2 \xrightarrow{\text{FeCl}_3} + HCl$$

Vilsmeier-Formylierung

Kolbe-Schmitt-Carboxylierung

$$\begin{array}{c|cccc} OH & & OH \\ \hline & + & CO_2 & & \\ \hline \end{array}$$

Substitutenteneinflüsse

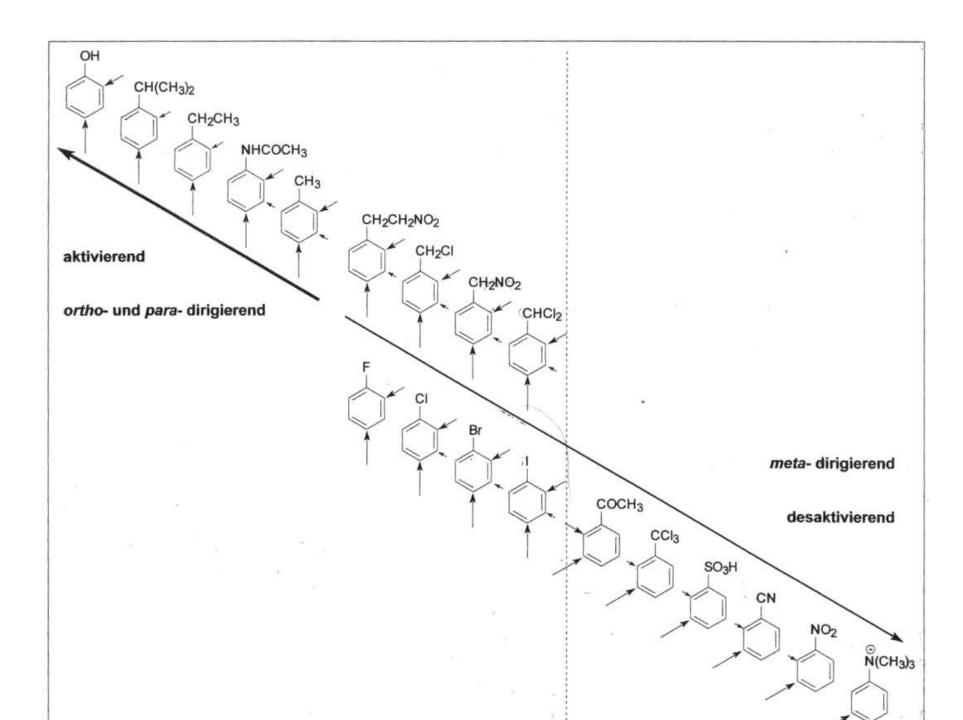
Bereits am Benzol vorhandene Substituenten beeinflussen die Reaktivität und die **REGIOSELEKTIVITÄT** der Substitution. Man unterscheidet 3 Arten von Substitutenten:

SUBSTITUENTEN ERSTER ORDNUNG: -OH, -OMe, -NH₂, Alkyl

+M-Effekt +I-Effekt

Erhöhen die Reaktivität

Dirigieren S_F nach *ortho, para*


SUBSTITUTENTEN ZWEITER ORDNUNG: -NO₂, -CN, -CHO, -COOR, -CF₃

-M-Effekt -I-Effekt

Erniedrigen die Reaktivität Dirigieren S_F nach *meta*

SUBSTITUTENTEN DRITTER ORDNUNG: Halogene

+M-Effekt und starker –I-Effekt Erniedrigen leicht die Reaktivität Dirigieren S_F nach *ortho, para*

Beispiele für Aromatenreaktionen

Reduktion

$$\begin{array}{c|c} & H_2, Ni \\ \hline \hline 20^{\circ}C, 3 \text{ bar} \end{array} \qquad \begin{array}{c} H_2, Ni \\ \hline 100^{\circ}C, 120 \text{ bar} \end{array}$$

Seitenkettenhalogenierung (SSS), Kernhalogenierung (KKK)

$$Cl_2$$
, $AlCl_3$ Cl_2 , hv

Bromierung/Nitrierung

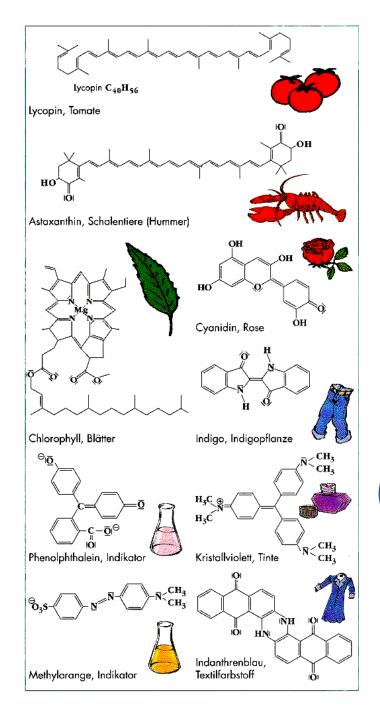
Diazoniumsalze

Darstellung:

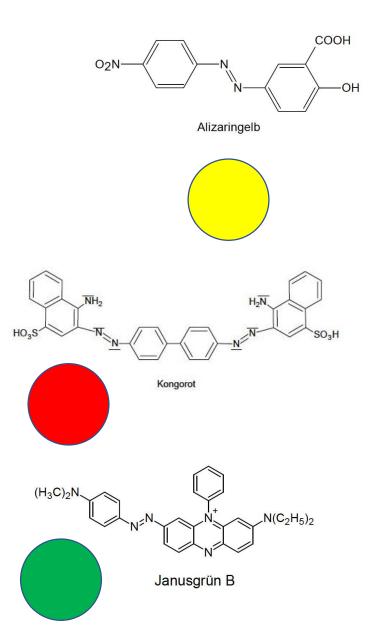
$$\begin{array}{c|c} NH_2 & & \bigoplus \\ NaNO_2 & & \\ \hline & HCl & \\ \end{array}$$

Reduktion:

Azokupplung:


Sandmaier:

$$\begin{array}{c}
\bigoplus_{N \equiv N} \\
I & \longrightarrow
\end{array}$$

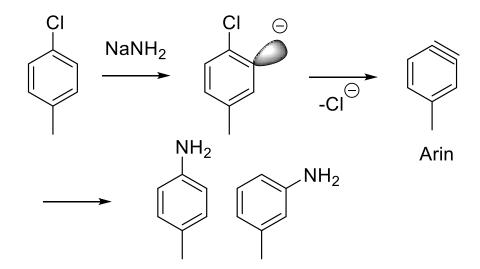

$$\begin{array}{c}
CuI \\
\end{array}$$

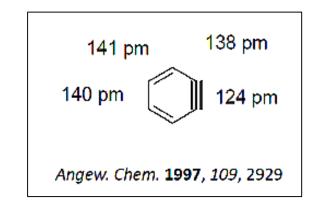
Balz-

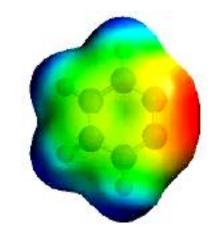
Schiemann:

absorbiertes Licht	
Wellenlänge (in nm)	Farbe
730	purpur
640	rot
590	orange
550	gelb
530	gelbgrün
510	grün
490	blaugrün
450	blau
425	indigoblau
400	violett

Nucleophile Reaktion


$$O_2N$$
 + H_2N COOH O_2N O_2N


Polycyclische Aromaten


Sangers Reagenz

$$SO_3H$$
 H_2SO_4
 $< 80^{\circ}C$
 H_2SO_4
 $160^{\circ}C$
 SO_3H

Arinmechanismus

